Amazon cover image
Image from Amazon.com

Data Science and Knowledge Discovery

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022Description: 1 electronic resource (254 p.)ISBN:
  • 9783036543161
  • 9783036543154
Subject(s): Online resources: Summary: Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining.
List(s) this item appears in: Faculty Informational Technology
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Shelving location Call number Status Notes Date due Barcode
Electronic edition Bucheon University Library Computers OAPEN 004 D24 Not for loan Смотреть (pdf) 1010559

Open Access star Unrestricted online access

Data Science (DS) is gaining significant importance in the decision process due to a mix of various areas, including Computer Science, Machine Learning, Math and Statistics, domain/business knowledge, software development, and traditional research. In the business field, DS's application allows using scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured and unstructured data to support the decision process. After collecting the data, it is crucial to discover the knowledge. In this step, Knowledge Discovery (KD) tasks are used to create knowledge from structured and unstructured sources (e.g., text, data, and images). The output needs to be in a readable and interpretable format. It must represent knowledge in a manner that facilitates inferencing. KD is applied in several areas, such as education, health, accounting, energy, and public administration. This book includes fourteen excellent articles which discuss this trending topic and present innovative solutions to show the importance of Data Science and Knowledge Discovery to researchers, managers, industry, society, and other communities. The chapters address several topics like Data mining, Deep Learning, Data Visualization and Analytics, Semantic data, Geospatial and Spatio-Temporal Data, Data Augmentation and Text Mining.

Creative Commons https://creativecommons.org/licenses/by/4.0/ cc

English

There are no comments on this title.

to post a comment.