000 | 05193naaaa2201249uu 4500 | ||
---|---|---|---|
003 | BUT | ||
005 | 20240110121740.0 | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 202302s2023 x |||||o ||||eng|| d | ||
020 | _a9783036562322 | ||
020 | _a9783036562315 | ||
040 |
_aoapen _coapen |
||
041 | 0 | _aeng | |
080 | _a517.51 | ||
100 | 1 |
_aKharkevych, Yurii _4edt |
|
245 | 1 | 0 | _aApproximation Theory and Related Applications |
260 |
_aBasel _bMDPI - Multidisciplinary Digital Publishing Institute _c2023 |
||
300 | _a1 electronic resource (228 p.) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
520 | _aIn recent years, we have seen a growing interest in various aspects of approximation theory. This happened due to the increasing complexity of mathematical models that require computer calculations and the development of the theoretical foundations of the approximation theory. Approximation theory has broad and important applications in many areas of mathematics, including functional analysis, differential equations, dynamical systems theory, mathematical physics, control theory, probability theory and mathematical statistics, and others. Approximation theory is also of great practical importance, as approximate methods and estimation of approximation errors are used in physics, economics, chemistry, signal theory, neural networks and many other areas. This book presents the works published in the Special Issue "Approximation Theory and Related Applications". The research of the world’s leading scientists presented in this book reflect new trends in approximation theory and related topics. | ||
540 |
_aCreative Commons _fhttps://creativecommons.org/licenses/by/4.0/ _2cc |
||
546 | _aEnglish | ||
650 | 0 |
_aМатематические науки _91395 |
|
653 | _ageneralized Caputo proportional fractional derivative | ||
653 | _astability | ||
653 | _aexponential stability | ||
653 | _aMittag–Leffler stability | ||
653 | _aquadratic Lyapunov functions | ||
653 | _aHopfield neural networks | ||
653 | _afixed point | ||
653 | _apartial metric space | ||
653 | _amodular space | ||
653 | _apartial modular space | ||
653 | _aweakly compatible mappings | ||
653 | _aC-class function | ||
653 | _aVolterra integral equation | ||
653 | _astatistical convergence | ||
653 | _aquasi-statistical convergence | ||
653 | _aasymptotic density | ||
653 | _aquasi-density | ||
653 | _athe matrix summability method | ||
653 | _aRiemann and Lebesgue integrals | ||
653 | _astatistical Riemann and Lebesgue integral | ||
653 | _adeferred weighted Riemann summability | ||
653 | _aBanach space | ||
653 | _aBernstein polynomials | ||
653 | _apositive linear operators | ||
653 | _aKorovkin-type approximation theorems | ||
653 | _aLebesgue-measurable sequences of functions | ||
653 | _aWeyl-Nagy classes | ||
653 | _ageneralized Abel-Poisson integral | ||
653 | _aasymptotic equality | ||
653 | _aKolmogorov–Nikol’skii problem | ||
653 | _auniform metric | ||
653 | _aBMO | ||
653 | _adegenerate Beltrami equations | ||
653 | _aasymptotic homogeneity at infinity | ||
653 | _aconformality by Belinskii and by Lavrent’iev | ||
653 | _ahydromechanics | ||
653 | _afluid mechanics | ||
653 | _aparabolic system | ||
653 | _aoptimal control | ||
653 | _aaveraging method | ||
653 | _aapproximate solution | ||
653 | _areverse Hardy’s inequality | ||
653 | _adynamic inequality | ||
653 | _atime scale | ||
653 | _aFuzzy Modus Ponens | ||
653 | _aFuzzy Modus Tollens | ||
653 | _areasoning algorithm | ||
653 | _aintuitionistic fuzzy sets | ||
653 | _ainterval-valued fuzzy sets | ||
653 | _aconfluent hypergeometric function of several variables | ||
653 | _arecurrence relations | ||
653 | _abranched continued fraction | ||
653 | _aapproximant | ||
653 | _auniform convergence | ||
653 | _asymmetric polynomial on a Banach space | ||
653 | _acontinuous polynomial on a Banach space | ||
653 | _aalgebraic basis | ||
653 | _aLebesgue-Rohlin space | ||
653 | _asymbolic regression | ||
653 | _aMean Square Error | ||
653 | _aPearson Correlation Coefficient | ||
653 | _aoscillations in solutions | ||
653 | _adynamic system criteria | ||
653 | _awaste gasification | ||
653 | _aOccam’s Razor | ||
653 | _anonparametric estimation | ||
653 | _apointwise error | ||
653 | _alocal Hölder space | ||
653 | _awavelet | ||
653 | _aset of multisets | ||
653 | _atopological rings | ||
653 | _asupersymmetric polynomials | ||
653 | _asymmetric bases | ||
653 | _an/a | ||
700 | 1 |
_aKharkevych, Yurii _4oth |
|
856 | 4 | 0 |
_awww.oapen.org _uhttps://mdpi.com/books/pdfview/book/6657 _70 _zDownload |
856 | 4 | 0 |
_awww.oapen.org _uhttps://directory.doabooks.org/handle/20.500.12854/96711 _70 _zDescription |
909 |
_c4 _dDarya Shvetsova |
||
942 |
_2udc _cEE |
||
999 |
_c6636 _d6636 |