000 | 02695naaaa2200553uu 4500 | ||
---|---|---|---|
001 | http://library.oapen.org/handle/20.500.12657/23754 | ||
005 | 20230323120725.0 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20191118s2013 xx |||||o ||| 0|eng d | ||
020 | _a9783110283600.43 | ||
020 | _a9783110282405 | ||
040 |
_aoapen _coapen |
||
024 | 7 |
_a10.1515/9783110283600.43 _cdoi |
|
041 | 0 | _aeng | |
042 | _adc | ||
072 | 7 |
_aPBF _2bicssc |
|
072 | 7 |
_aPBW _2bicssc |
|
072 | 7 |
_aUY _2bicssc |
|
100 | 1 |
_aGyarmati, Katalin _4auth |
|
700 | 1 |
_aCharpin, Pascale _4edt |
|
700 | 1 |
_aPott, Alexander _4edt |
|
700 | 1 |
_aWinterhof, Arne _4edt |
|
700 | 1 |
_aCharpin, Pascale _4oth |
|
700 | 1 |
_aPott, Alexander _4oth |
|
700 | 1 |
_aWinterhof, Arne _4oth |
|
245 | 1 | 0 | _aChapter Measures of Pseudorandomness |
260 |
_aBerlin/Boston _bDe Gruyter _c2013 |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
506 | 0 |
_aOpen Access _2star _fUnrestricted online access |
|
520 | _aIn the second half of the 1990s Christian Mauduit and András Sárközy [86] introduced a new quantitative theory of pseudorandomness of binary sequences. Since then numerous papers have been written on this subject and the original theory has been generalized in several directions. Here I give a survey of some of the most important results involving the new quantitative pseudorandom measures of finite bi-nary sequences. This area has strong connections to finite fields, in particular, some of the best known constructions are defined using characters of finite fields and their pseudorandom measures are estimated via character sums. | ||
536 | _aFP7 Ideas: European Research Council | ||
540 |
_aAll rights reserved _4http://oapen.org/content/about-rights |
||
546 | _aEnglish | ||
650 | 7 |
_aAlgebra _2bicssc |
|
650 | 7 |
_aApplied mathematics _2bicssc |
|
650 | 7 |
_aComputer science _2bicssc |
|
653 | _aCharacter sum | ||
653 | _aExponential sum | ||
653 | _aPermutation Polynomial | ||
653 | _aAlmost Perfect Nonlinear Function | ||
653 | _aFinite Field | ||
773 | 1 | 0 |
_tFinite Fields and Their Applications: Character Sums and Polynomials _7nnaa _oOAPEN Library UUID: 71105342-6442-4069-93cf-0ef78e3a68bf |
856 | 4 | 0 |
_awww.oapen.org _uhttps://library.oapen.org/bitstream/id/0913e3cb-e818-4238-ac1a-96d9f3bd1ec5/10_[9783110283600 - Finite Fields and Their Applications] Measures.pdf _70 _zOAPEN Library: download the publication |
856 | 4 | 0 |
_awww.oapen.org _uhttp://library.oapen.org/handle/20.500.12657/23754 _70 _zOAPEN Library: description of the publication |
999 |
_c6126 _d6126 |
||
909 |
_a4 _bDarya Shvetsova _c4 _dDarya Shvetsova |